skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Coban, Gani Caglar"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Although the source active regions of some coronal mass ejections (CMEs) were identified in CME catalogues, vast majority of CMEs do not have an identified source active region. We propose a method that uses a filtration process and machine learning to identify the sunspot groups associated with a large fraction of CMEs and compare the physical parameters of these identified sunspot groups with properties of their corresponding CMEs to find mechanisms behind the initiation of CMEs. These CMEs were taken from the Coordinated Data Analysis Workshops (CDAW) data base hosted at NASA’s website. The Helioseismic and Magnetic Imager (HMI) Active Region Patches (HARPs) were taken from the Stanford University’s Joint Science Operations Center (JSOC) data base. The source active regions of the CMEs were identified by the help of a custom filtration procedure and then by training a long short-term memory network (LSTM) to identify the patterns in the physical magnetic parameters derived from vector and line-of-sight magnetograms. The neural network simultaneously considers the time series data of these magnetic parameters at once and learns the patterns at the onset of CMEs. This neural network was then used to identify the source HARPs for the CMEs recorded from 2011 till 2020. The neural network was able to reliably identify source HARPs for 4895 CMEs out of 14 604 listed in the CDAW data base during the aforementioned period. 
    more » « less